今天特长生小编为大家分享关于高考特长生、艺术特长生、体育特长生、舞蹈特长生等招生简章和录取分数线的相关文章!
2023山西高考数学的难度和复杂程度总体上难度呈现逐渐下降趋势。
但是,总体来说,高考数学的考点主要包括初中数学、高中数学和数学思维三个方面。初中数学是高考数学的基础,包括整数、分数、小数、比例、代数、几何等多个知识点。在初中数学方面,高考试题往往涉及到一些经典问题,如最大最小值、面积最大最小值、平均值等。
1、高中数学考点
高中数学是高考数学的主体,包括函数、三角函数、数列、概率与统计、解析几何等多个模块。在高中数学方面,高考试题往往要求学生运用不同数学知识点进行联想和综合运用。
数学思维是高考数学的精华所在,包括逻辑思维、推理能力、创新思维等。在数学思维方面,高考试题有时候会涉及到迭代、递推、容斥原理、置换群等较为陌生的概念。
2、高考数学备考策略
对于高考数学备考,学生需要在平时积累基础知识的同时,注重解题能力的训练。此外,适当安排备考时间,做好模拟试题和真题的练习也是非常重要的。
随着信息技术的飞速发展,高考数学考点逐渐向加入数据分析、算法设计等方向延伸,这也反映出了数学学科从传统计算到现代应用、从技能型到创新型的转变态势。
在高考数学中,不同的知识点之间常常存在联系,例如解析几何可以与向量、三角函数等知识点进行联系,同时也可以应用到物理、工程等领域中。因此,学生在备考时需要掌握好各个知识点之间的联系,将其应用于实际问题,并通过学科交叉思维来提高整体的数学素养。
总之,在高中数学备考过程中,学生应有意识地将初中和高中的数学知识系统化,注重对思维方法和思维模式的培养,同时关注数学学科的新发展,做好未来职业规划和知识储备。
高考数学有哪些难懂的知识点?
高考数学的难点有很多,以下是一些常见的难点: -函数:函数是高中数学的重点和难点之一。函数的概念、性质和应用都是高考数学中的重点。函数的难点在于理解其抽象性和变化性。 -解析几何:解析几何是高中数学的另一个难点。它涉及到许多知识点,如曲线方程、直线方程、两点间距离等。解析几何的难点在于如何将题设条件转化成等量关系。 -数列:数列是高中数学中的另一个难点。数列包括等差数列、等比数列、等差比数列等。数列的难点在于如何求通项公式和前n项和公式。 -导数:导数是高中数学中的重要知识点之一。导数的应用非常广泛,如求极值、最值、单调性等。导数的难点在于理解其概念和方法。高考数学命题点及答题技巧
【 #高考# 导语】学而不思则罔,在掌握知识点之后将其运用在解题中才是备考的好方法。高考备考需要一点点积累才能到达效果, 为您提供高考数学命题点及答题技巧,通过复习,能够巩固所学知识并灵活运用,考试时会更得心应手,快来看看吧!高考数学各题型命题趋势
1.选择题
高考数学试题中,选择题注重多个知识点的小型综合,渗透各种数学思想和方法,体现以考查“三基”为重点的导向,能否在选择题上获取高分,对高考数学成绩影响重大。
选择题主要考查基础知识的理解、基本技能的熟练、基本计算的准确、基本方法的运用、考虑问题的严谨、解题速度的快捷等方面。
解答选择题的基本策略是:要充分利用题设和选择支两方面提供的信息作出判断。一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不必采用常规解法;能使用间接法解的,就不必采用直接解;对于明显可以否定的选择支应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选最简解法等。解题时应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。
从考试的角度来看,解选择题只要选对就行,至于用什么“策略”“手段”都是无关紧要的,所以人称可以“不择手段”。但平时做题时要尽量弄清每一个选择支正确的理由与错误的原因。另外,在解答一道选择题时,往往需要同时采用几种方法进行分析、推理,只有这样,才会在高考时充分利用题目自身提供的信息,化常规为特殊,避免小题大作,真正做到准确和快速。
总之,解答选择题既要看到各类常规题的解题思想原则上都可以指导选择题的解答,但更应该充分挖掘题目的“个性”,寻求简便解法,充分利用选择支的暗示作用,迅速地作出正确的选择。这样不但可以迅速、准确地获取正确答案,还可以提高解题速度,为后续解题节省时间。
2.填空题
填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等。
不过填空题和选择题也有质的区别。首先,表现为填空题没有备选项。因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足,对考生独立思考和求解,在能力要求上会高一些,长期以来,填空题的答对率一直低于选择题的答对率,也许这就是一个重要的原因。
其次,填空题的结构,往往是在一个正确的命题或断言中,抽去其中的一些内容(既可以是条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活。在对题目的阅读理解上,较之选择题,有时会显得较为费劲。当然并非常常如此,这将取决于命题者对试题的设计意图。
数学填空题是一种只要求写出结果,不要求写出解答过程的客观性试题。解题时,要有合理的分析和判断,要求推理、运算的每一步骤都正确无误,还要求将答案表达得准确、完整。合情推理、优化思路、少算多思将是快速、准确地解答填空题的基本要求。
数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断。求解填空题的基本策略是要在“准”“巧”“快”上下功夫。
3.解答题
解答题虽然灵活多变,但所考查数学知识、方法、基本数学思想是不变的,题目形式的设置是相对稳定的,突出特点是稳定,继续强化双基,考查能力,突出主干,考查全面。
解答题的解法灵活多样,入口宽,得部分分易,得满分难,几乎每题都有梯度,层层设关卡,能较好地区分考生的能力层次。运算与推理互相渗透,推理证明与计算紧密结合,运算能力强弱对解题的成败有很大影响。在考查逻辑推理能力时,常常与运算能力结合考查,推导与证明问题的结论,往往要通过具体的运算;在计算题中,也较多地掺进了逻辑推理的成分,边推理边计算.注重探究能力和创新能力的考查。探索性试题是考查这种能力的好素材,因此在试卷中占有重要的作用。
高考数学各题型答题策略
1.选择题——“不择手段”。解题策略如下:
(1)注意审题。把题目多读几遍,弄清这个题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。
(2)答题顺序不一定按题号进行。可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,产生解题的激情和*,再解答陌生或不太熟悉的题目。若有时间,再去拼那些把握不大或无从下手的题。这样也许能超水平发挥。
(3)挖掘隐含条件,注意易错易混点,例如集合中的空集、函数的定义域、应用性问题的限制条件等。
(4)方法多样,不择手段。高考试题凸现能力,小题要小做,注意巧解,善于使用数形结合、特值(含特殊值、特殊位置、特殊图形)、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。不要在一两个小题上纠缠,杜绝小题大做,如果确实没有思路,也要坚定信心,“题可以不会,但是要做对”,即使是“蒙”也有25%的胜率。
(5)控制时间。一般不要超过40分钟,是25分钟左右完成选择题,争取又快又准,为后面的解答题留下充裕的时间,防止“超时失分”。
2.填空题——“直扑结果”。解题策略如下:
填空题和选择题有相似之处,有些解题策略是可以共用的,在此不再多讲,只针对不同的特征给几条建议:
(1)作答的结果必须是数值准确,形式规范,例如集合形式的表示、函数表达式的完整等,结果稍有毛病便是零分;
(2)解答填空题要做到“正确、合理、迅速”。解答的基本策略是:快——运算要快,力戒小题大做;稳——变形要稳,防止操之过急;全——答案要全,避免对而不全;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。
3.解答题——“步步为营”
数学高考阅卷评分实行懂多少知识给多少分的评分办法,叫做“分段评分”。而考生“分段得分”的基本策略是:会做的题目力求不失分,部分理解的题目力争多得分。会做的题目若不注意准确表达和规范书写,常常会被“分段扣分”,有阅卷经验的老师告诉我们,解答立体几何题时,用向量方法处理的往往扣分少。
解答题阅卷的评分原则一般是:第一问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。解题策略如下:
(1)常见失分因素:
①对题意缺乏正确的理解,应做到慢审题快做题;
②公式记忆不牢,考前一定要熟悉公式、定理、性质等;
③思维不严谨,不要忽视易错点;
④解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论;
⑤计算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;
⑥轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。
(2)何为“分段得分”:
有什么样的解题策略,就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。
①缺步解答:如果遇到一个很困难的问题,将它们分解为一系列的步骤,先解决问题的一部分,能解决多少就解决多少,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”。
②跳步答题:解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。由于考试时间的限制,“卡壳处”的攻克如果来不及了,就可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。若题目有两问,第一问想不出来,可把第一问作“已知”,先做第二问,这也是跳步解答。
③辅助解答:一道题目实质性的步骤未找到之前,找辅助性的步骤是明智之举。如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高成功率。试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,所写字母与题中图形上的是否一致,格式是否规范,尤其是要审查字母、符号是否抄错,在确信万无一失后方可交卷。
(3)能力不同,要求有变:
针对基础较差、以二本为目标的考生而言要“以稳取胜”——这类考生除了知识方面的缺陷外,“会而不对,对而不全”是这类考生的致命伤。丢分的主要原因在于审题失误和计算失误。考试时要克服急躁心态,如果发现做不下去,就尽早放弃,把时间用于检查已做的题,或回头再做前面没做的题。记住,只要把你会做的题都做对,你就是最成功的人!
针对二本及部分一本的同学而言要“以准取胜”——他们基础比较扎实,但也会犯低级错误,所以,考试时要做到准确无误(指会做的题目),除了最后两题的第三问不一定能做出,其他题目大都在“火力范围”内。但前面可能遇到“拦路虎”,要敢于放弃,把会做的题做得准确无误,再回来“打虎”。
针对第一志愿为大学的考试而言要“以新取胜”——这些考生的主攻方向是能力型试题,在快速、正确做好常规试题的前提下,集中精力做好能力题。这些试题往往思考强度大,运算要求高,解题需要新的思想和方法,要灵活把握,见机行事。如果遇到不顺手的试题,也不必恐慌,可能是试题较难,大家都一样,此时,使会做的题不丢分就是上策。
TeChangSheng.Com特长生网高考艺考特长生招生院校网上报名入口,报考时间,分数线,艺术特长生,体育,舞蹈,音乐,美术,书法,器乐等招生简章,填报志愿等信息.